GREENWAY MODERN SCHOOL

SESSION 2018-2019
CLASS $10^{\text {TH }}$

SUBJECT-MATHS (AREAS RELATED TO CIRCLES)

Q1. Two circles touch each other externally. The sum of their areas is 130π $\mathrm{sq} . \mathrm{cm}$. And distance between their centre is 14 cm find radii of circles.

Q2. Two circles touch internally. The sum of their areas is $116_{\pi} \mathrm{sq} . \mathrm{cm}$ and distance between their centre is 6 cm . Find the radii of circles.

Q3. An elastic belt is placed round the rim of a pulley of radius 5 cm . One point on the belt is pulled directly away from centre O of the pulley until it is at P 10 cm from O . find the length of belt that is in contact with rim of pulley.Also, find the shaded area.

Q4. In the below figure it shows a sector of a circle, centre O containing an angle θ prove that
(i) Perimeter of the shaded region is $r\left(\tan \theta+\sec \theta+\frac{\pi \theta}{180}-1\right)$
(ii) Area of shaded region is $\frac{r^{2}}{2}\left(\tan \theta-\frac{\pi \theta}{180}\right)$

Q5. In the below figure it shows a sector of a circle of radius rcm containing an angle θ. The area of a sector is a sq.cm and perimeter of the sector is 50 cm . prove that

(i) $\theta=\frac{360}{\pi}\left(\frac{25}{r}-1\right)$
(ii) $\mathrm{A}=25 r-r^{2}$

Q6. In the figure two arcs, A and B. Arc A is part of circle with centre O and radius OP. Arc B is part of the circle with centre M and radius $P M$, where M is the midpoint of PQ. Show that the area enclosed by two arcs is equal to

$$
25\left(\sqrt{3}-\frac{\pi}{6}\right) \mathrm{sq} \mathrm{~cm}
$$

Q7.AB is diameter of circle, centre $\mathrm{O} . \mathrm{C}$ is a point on the circumference such that $\angle C O B=\theta$. The area of the minor segment cut off by AC is equal to twice the area of the sector BOC.Prove that $\sin \frac{\theta}{2} \cos \frac{\theta}{2}=\pi\left(\frac{1}{2}-\frac{\theta}{120}\right)$

Q8. A chord of a circle subtends an angle of θ at the centre of the circle. The area of minor segment cut off by the chord is one eighth of the area of the circle. Prove that $8 \sin \frac{\theta}{2} \cos \frac{\theta}{2}+\pi=\frac{\pi \theta}{45}$

Q9. Floor of a room is a dimension $5 m \times 4 m$ and it is covered with circular tiles of diameter 50 cm each as shown in given figure. Find the area of floor that remains uncovered with tiles (use $\pi=3.14$)

Q10.In the given figure ABC is an equilateral triangle inscribed in a circle of radius 4 cm with centre O. Find the area of shaded region

Q11. In an equilateral triangle of side 24 cm , a circle is inscribed touching its sides. Find the area of remaining portion of a triangle $($ take $\sqrt{3}=1.732)$

Q12. In the given figure, ABC is a right angle triangle at A . Find the area of the shaded region, if $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$ and I is the centre of incircle of triangle ABC.

Q13. ABCD is a field in the shape of a trapezium. $\mathrm{AB} \| \mathrm{DC}$ and $\angle A B C=90$, $\angle D A B=60$. Four sectors are formed with centers A,B,C,D . the radius of each sector is 17.5 m . Find
(i) Total area of 4 sectors.
(ii) Area of remaining portion given that $\mathrm{AB}=75 \mathrm{~m}$ and $\mathrm{CD}=50 \mathrm{~m}$.

Q14. In given figure a crescent is formed by two circles which touch at A. C is the centre of the larger circle (with centre O) perpendicular to each other and OD is diameter of smaller circle. If $\mathrm{OA}=7 \mathrm{~cm}$, find area of the shaded region.

Q15. In the given figure ABCD is a trapezium with $\mathrm{AB} \| \mathrm{DC}$ and $\angle B C D=60$. If BEFC is a sector of circle with centre C and $A B=B C=7 \mathrm{~cm}$ and $D E=4 \mathrm{~cm}$, then find the area of shaded region (Use $\pi=\frac{22}{7}$ and $\sqrt{3}=1.732$)

Q16. With vertices A, B and C of a triangle ABC as centers, arcs are drawn with radii 5 cm each as shown in given figure. If $\mathrm{AB}=14 \mathrm{~cm}, \mathrm{BC}=48 \mathrm{~cm}$ and $\mathrm{CA}=$ 50 cm , then find area of shaded region. (use $\pi=3.14$)

Q17. In the given figure, the square ABCD is divided into 5 equal parts, all having same area. The central part is circular and the lines AE,GC,BF and HD lie along the diagonals AC and BD of the square. If $\mathrm{AB}=2 \mathrm{~cm}$, find:
(i) The circumference of the central part
(ii) The perimeter of the part ABEF

Q18. In the given figure, $A B=36 \mathrm{~cm}$ and M is the midpoint of $A B$.Semicircles are drawn on AB, AM and MB as diameters. A circle with centre C touches all the three circles. Find the area of shaded region.

Q19. In the given figure, ABC is a right angled triangle in which $\angle A=90, \mathrm{AB}$ $=21 \mathrm{~cm}$ and $A C=28 \mathrm{~cm}$. Semicircles are described on $A B, B C$ and $A C$ as diameters. Find the area of shaded region

Q20. In the given figure shows cross section of railway tunnel. The radius OA of the circular part is 2 m . If $\angle A O B=90$ find:
(i) The height of tunnel
(ii) The perimeter of cross section
(iii) Area of cross section

Q21.A path 4 m wide runs round semi-circular grassy plot whose circumference is $163 \frac{3}{7} \mathrm{~m}$ find:
(i) Area of path
(ii) Cost of gravelling at rs 1.50sq.m
(iii) Cost of turfing at 45 paise sq.m

